Data Mining Project

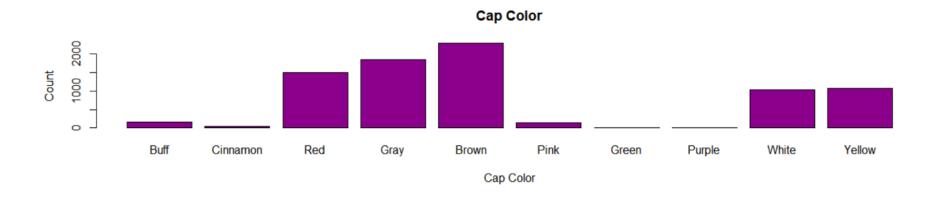
Baskar Dakshinamoorthy & Lauren Foltz

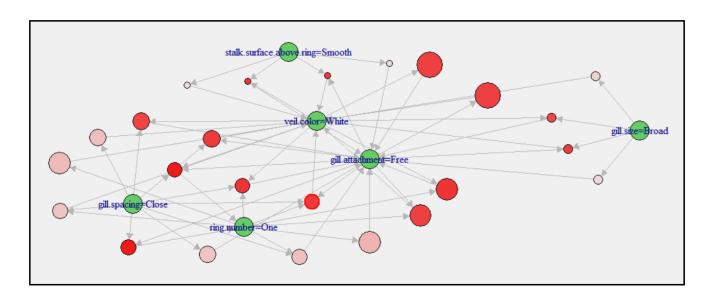
About the Data Set

- Mushroom Data set
- 8,124 rows x 23 columns
- The target variable is Edible / Poisonous
- Other variables include
 - Descriptions of the mushroom structure
 - Cap, Gills, Stalk, etc.
 - Population
 - Clustered, Numerous, Scattered, etc.
 - Habitat
 - Grasses, Leaves, Meadows, etc.
 - Odor
 - Almond, Fishy, Spicy, etc.

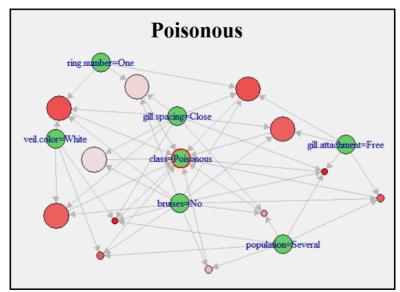
Goals & Questions

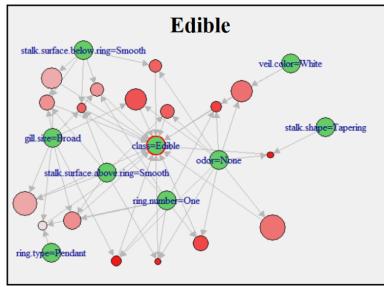
- The main goal is to predict "Edible" or "Poisonous" based on the other variables.
- Other questions include
 - Which variables are the most useful for prediction?
 - Are certain traits associated with each other?
 - O Does this data set cluster well, and how many clusters would there be?




Data Cleaning and Visual EDA

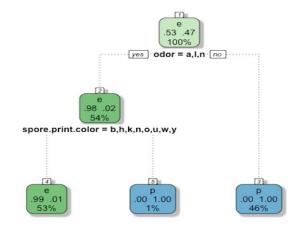
- Missing Values: "Stalk Root" had a "?" for over 2,000 instances, and didn't appear to be a strong predictor, so it was removed.
- Values were initially just letters, so "recode" was used to rename the variables into something more meaningful.
- Variables were visualized using bar charts.


Association Rules Mining

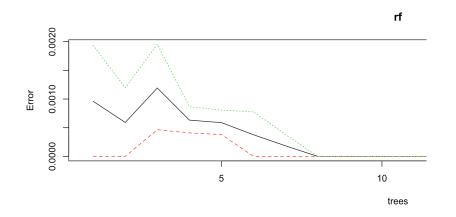

- First we ran models without LHS or RHS specified.
 - Confidence and Support were strong within the dataset, but Lift was not so strong.
 - A white veil color was highly associated with free gill attachment.

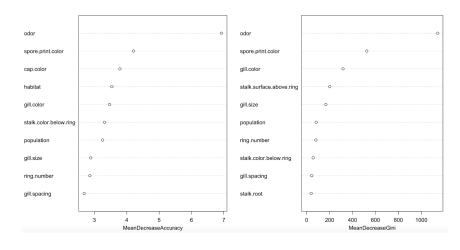
Association Rules Mining

- We ran several models to determine associations with edibility.
 - o Poisonous Mushrooms are associated with closely spaced gills and no bruises.
 - Edible mushrooms are associated with no odor and a smooth stalk surface above the ring.



Decision Tree Classification


- Used 70:30 data split for creating training and test datasets.
- Prediction Accuracy came in at 99.3% With gini index as criteria.
- Complexity Parameter(CP) used 2 variables to construct the decision tree.


Variable importance		
odor 25	spore.print.color	gill.color 16
stalk.surface.above.ring	stalk.surface.below.ring	ring.type 13

Random Forest Classifier

- Used Random Forest Classifier to predict the importance of Variables and to avoid overfitting.
- Accuracy came in at 100% compared to Decision Tree Accuracy of 99.38%
 - Error Rate flatlined after constructing 8 decision trees
 - Mean Decrease Accuracy and Mean Decrease Gini showed odor and spore print color as the top variables used in prediction.

Looking Forward

- Methods still left to use:
 - Clustering
 - Naive Bayes
 - o SVM
 - Text Mining
- Mushroom data set has no quant data
 - We may use the wine quality data set.

